Contents lists available at SciVerse [ScienceDirect](http://www.sciencedirect.com/science/journal/00221139)

Journal of Fluorine Chemistry

journal homepage: www.elsevier.com/locate/fluor

A novel synthesis of fluorine-containing cyclopentenones via Pauson–Khand reaction

Tsutomu Konno *, Takumi Kida, Akinori Tani, Takashi Ishihara

Department of Chemistry and Materials Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan

A R T I C L E I N F O

Article history: Received 5 July 2012 Received in revised form 24 August 2012 Accepted 26 August 2012 Available online 1 September 2012

Keywords: Fluorine-containing cyclopentenone Pauson–Khand NMO TMANO

1. Introduction

2-Cyclopentenone derivatives occupy a central position in organic synthesis owing to their wide utility as potent synthetic blocks, particularly as Michael acceptors for conjugate addition reactions, dienophiles and dipolarophiles for cycloaddition reactions, and so on [\[1\].](#page-9-0) 2-Fluoroalkyl-2-cyclopentenones 1, shown in [Fig.](#page-1-0) 1, are likewise of great synthetic value as building blocks for constructing various types of fluorine-containing compounds, which attract much attention in biological and materials chemistry. Therefore, it is a very significant subject to develop a convenient and effective route to such fluorinated cyclopentenones and related compounds. Nevertheless, there have been quite limited studies on the preparation of 2-fluoroalkyl-2-cyclopentenone derivatives thus far [\[2\].](#page-9-0) Herein is disclosed a convenient synthetic approach to 1 via Pauson–Khand reaction [\[3\]](#page-9-0) by using fluoroalkylated alkynes in detail [\[4\]](#page-9-0).

2. Results and discussion

2.1. Intermolecular Pauson–Khand reaction

Our initial studies focused on the intermolecular Pauson–Khand reaction of trifluoromethylated internal alkyne **2a** (Rf = CF_3 , R = p- ClC_6H_4 [\[5\]](#page-9-0) and 2-norbornene as shown in [Scheme](#page-1-0) 1 and [Table](#page-1-0) 1. Thus, treatment of 2a with 1.2 equiv. of $Co_2(CO)_8$ in dichloroethane

A B S T R A C T

Intermolecular Pauson–Khand reaction of fluoroalkylated alkynes with 2-norbornene or 2,5-norbornadiene at the reflux temperature of dichloroethane proceeded smoothly to give the corresponding cyclopentenone derivatives in high yields as a mixture of regioisomers. On the other hand, intramolecular Pauson–Khand reaction of fluorine-containing 1,6-enyne proceeded in the presence of NMO or TMANO to give the bicyclic adducts in good yields. Additionally, allyl CF₃-propargyl ether also underwent a smooth Pauson–Khand reaction in the presence of amine oxide, the corresponding bicyclic compounds being obtained in a highly diastereoselective manner.

- 2012 Elsevier B.V. All rights reserved.

at room temperature for 2 h gave the corresponding alkyne–cobalt complex 3a in quantitative yield. Without isolation, 3.0 equiv. of 2 norbornene was added into the reaction mixture, and then the whole was stirred at room temperature for 6 h. However, no desired product was obtained and the alkyne–cobalt complex was recovered almost quantitatively (Entry 1). On the other hand, the reaction at the reflux temperature gave the corresponding adducts in excellent yield (Entry 2). In this case the product was obtained as a diastereomeric mixture in a ratio of 68:32 of 4a and 5a [\[6\].](#page-9-0) Addition of 1,4-dioxane or MeSPh did not lead to a significant influence on the reaction at all (Entries 3 and 4). In sharp contrast, amine oxide, which is recognized as a very effective promoter for Pauson–Khand reaction in the non-fluorinated system [\[7\]](#page-9-0), led to a significant decrease of the yield (Entry 5). Several attempts to improve the yield in the amine oxide-promoted Pauson–Khand reaction were fruitless as shown in Entries 6 and 7.

We next examined the Pauson–Khand reaction of various trifluoromethylated internal alkynes under the reflux conditions without a promoter. The results are summarized in [Table](#page-1-0) 2.

As shown in Entries 1–3, the alkynes having an electronwithdrawing or an electron-donating group on the benzene ring were found to be good substrates, the corresponding cyclopentenones 4 and 5 being obtained in high yields as a diastereomeric mixture in a ratio of ca. 70:30. The position of the substituent on the benzene ring slightly influenced on the yield (Entries 3–5). Additionally, the opposite regioselectivity was observed in the case of the alkyne 2e having an ortho-substituted aryl group as R (Entry 5). Use of an alkyl substituent and an ethoxycarbonyl group as R caused a significant improvement of the regioselectivity, 4f and 4g being obtained preferentially (Entries 6 and 7). When the

Corresponding author. E-mail address: konno@chem.kit.ac.jp (T. Konno).

^{0022-1139/\$ –} see front matter © 2012 Elsevier B.V. All rights reserved. <http://dx.doi.org/10.1016/j.jfluchem.2012.08.006>

Table 1

Fig. 1. 2-Fluoroalkyl-2-cyclopentenones.

Investigation of the reaction conditions (a: $Rf = CF_3$, $R = p-ClC_6H_4$).

Entry	Promoter	Yield ^a /%	Isomer ratio ^a	Recovery ^a /%	Recovery ^{a} /%
		of $4a + 5a$	(4a:5a)	of $3a$	of $2a$
1 ^b	None	0		92	0
2	None	(92)	68:32	4	0
3	1,4-Dioxane	99	73:27	Trace	0
4	MeSPh	94	78:22	0	0
5	NMO	50	69:31	0	0
6 ^c	NMO	59	71:29	12	0
7b	NMO	12	88:12	32	13

^a Determined by ¹⁹F NMR. Value in parentheses is of isolated yield.

b Carried out at room temperature.

^c Refluxed for 2 h.

difluoromethylated alkyne $2i$ was used, the reaction took place very smoothly to afford the corresponding 5i preferentially, like the reaction of $2e$ (vide infra) (Entry 9).

We also investigated the Pauson–Khand reaction using various non-fluorinated alkenes. Although the reaction with 2,5-norbornadiene afforded the corresponding cyclopentenone 4j and 5j in good yield (Scheme 2), the other alkenes, such as cyclohexene, maleic anhydride, ethylene carbonate, and 1-octene, did not give any trace of the desired products at all.

2.2. Regioselectivity

The regiochemical assignment was carried out based on the ¹³C NMR chemical shifts of the signals having the coupling constants $2J(C, F)$ or $3J(C, F)$. In general, it has been recognized in CF₃containing materials that the coupling constant $2/(C, F)$ is ca. 30– 40 Hz, while $\frac{3}{2}$ (C, F) is ca. 3–5 Hz. The chemical shifts as well as the coupling constants of the Pauson–Khand reaction products 4a–g, 5a and b are collected in [Table](#page-2-0) 3. In the compound 4, the signal having a larger coupling constant 2 J(C, F) appears at the upper field than the signal having a smaller coupling constant $\frac{3}{2}$ (C, F). The opposite situation can be observed in 5. Additionally, it has been Table 2

^a Isolated yield. Value in parentheses is the yield determined by ¹⁹F NMR. **b** Determined by ¹⁹F NMR.

^c The product could not be completely purified because of impurities.

reported that the ¹³C NMR signal of α -carbon attached with a CF₃ group in the known compound 6 appears at the upper field than that of β -carbon having ca. 3 Hz as a coupling constant, though 2 *J*(C, F) has not been described in the literature [\[2d\].](#page-9-0) Consequently, the structure of 4 was determined to be the exo-adduct having a $CF₃$ group at 2 position, while 5 was determined to be the exoadduct having a CF_3 group at 3 position [\[6\]](#page-9-0).

2.3. Reaction mechanism

It has been well recognized that the regiochemistry could be significantly influenced by steric as well as electronic effect in Pauson–Khand reaction of internal alkynes, which leads to a difficult prediction of the regioselectivity. Generally, the bulkier group on the alkynes tends to be located at α position to the carbonyl group. When the substituents on the alkynes are sterically similar, the more strongly electron-withdrawing group tends to be located at the β position to the carbonyl group ([Scheme](#page-2-0) 3) [\[2d,8\]](#page-9-0).

In the present study, the steric factor, not the electronic factor, might play an important role in the regioselectivity. Thus, a $CF₃$ group, which is considered to be similar to an isopropyl group in size [\[9\],](#page-9-0) might be bulkier than a phenyl as well as an alkyl functionality, resulted in a preferential formation of 4. On the other hand, an ortho-substituted aryl group is much bulkier than a metaand a para-substituted ones, and maybe a CF_3 group, leading to a preferential formation of 5. Additionally, a CHF₂ group might be a smaller substituent, compared to an aryl group as well as a $CF₃$

Scheme 1. Intermoleclar Pauson–Khand reaction.

Scheme 2. Intermolecular Pauson–Khand reaction with 2,5-norbornadiene.

6 β-Carbon : 3*J*(C, F) 167 ppm (q, $J_{\text{CE}} = 3$ Hz) 138 ppm (The splitting pattern was not shown in the literature.)

α-Carbon : 2*J*(C, F)

 $R^1 \rightarrow R^2$ O $R¹$ H H R^2 + O H_H H H_d $Co₂(CO)₈$

Major isomer Minor isomer

 $R^1 > R^2$ in size and/or R^1 = EDG (an electron-donating group)

 R^2

 R^2 = EWG (an electron-withdrawing group)

Scheme 3. Regioselectivity.

Scheme 4. Preparation of various trifluoromethylated enynes.

group $[10]$, therefore the β -difluoromethylated cyclopentenone derivative 5 being obtained preferentially.

2.4. Intramolecular Pauson–Khand reaction

Our attention was next directed toward the intramolecular Pauson–Khand reaction using fluorine-containing 1,6-enynes or ally propargyl ethers.

Various substrates could be prepared according to the conventional method as shown in Schemes 4 and 5. Thus, the nucleophilic addition of trifluoromethylated acetylide with 2,2 dimethyl-4-pentenal afforded 1,1,1-trifluoro-5,5-dimethyl-7 octen-2-yn-4-ol (7a) in a good yield [\[11\]](#page-9-0). The alcohol could be easily converted into the corresponding acetate 7b and the silyl ether 7c.

On the other hand, the alcohols 8a–f, prepared readily from 2 bromo-3,3,3-trifloropropene and the corresponding aldehydes, were subjected to 4.0 equiv. of allyl bromide in the presence of 1.5 equiv. of NaH and 4.0 equiv. of DMPU in THF at room temperature for 20 min, the corresponding propargyl ethers being obtained in good to high yields [\(Scheme](#page-3-0) 5).

With these substrates, we next examined the intramolecular Pauson–Khand reaction in detail ([Table](#page-3-0) 4). Thus, treatment of 7a with 1.2 equiv. of $Co_2(CO)_8$ in dichloroethane at room temperature for 1 h gave the corresponding alkyne–cobalt complex, 10a. Without isolation, the complex was allowed to heat at the reflux temperature for 6 h. In sharp contrast to the intermolecular Pauson–Khand reaction, the desired [2+2+1] cyclization product was obtained in only 14% yield, and neither the starting material nor the alkyne–cobalt complex were observed (Entry 1). When the reaction mixture was stirred for only 1 h, the desired bicyclic compounds 11a was obtained in 43% yield as a diastereomeric mixture in a ratio of ca. 1:1. In this case, however, any trace of starting alcohol as well as alkyne–cobalt complex was not detected at all (Entry 2). The reaction at room temperature led to 80% recovery of the alkyne–cobalt complex (Entry 3).

Scheme 5. Preparation of various fluorinated propargyl ethers.

Table 4

..

Intramolecular Pauson–Khand reaction of various enynes

^a Determined by ¹⁹F NMR.

Values in parentheses are of isolated yield.

^c Carried out with 1.2 equiv. of Co₂(CO)₈ in ClCH₂CH₂Cl. ^d The reaction mixture of **10a** was refluxed for 6 h.

^e The reaction mixture of 10a was refluxed for 1 h.

 f Carried out in ClCH₂CH₂Cl.

Then, we next investigated the promoter as shown in Entries 4-8. Thus, on treating $7a$ with $Co_2(CO)_8$ in THF at room temperature for 1 h, the corresponding alkyne–cobalt complex 10a was afforded, similar to the reaction in dichloroethane. Without isolation, the complex was exposed to 1.5 equiv. of N-methylmorpholine-N-oxde (NMO) at room temperature for 1 h, giving the corresponding bicyclic compounds, 11a in 58% yield in a stereorandam manner (Entry 5), while only a trace amount of the Pauson–Khand product was detected in the absence of NMO (Entry 4). Increase of the amount of NMO did not lead to a dramatic improvement of the yield (Entry 6), however, the reaction in the presence of 3.0 equiv. of trimethylamine-N-oxide (TMANO) gave the better result rather than the reaction in the presence of 1.5 equiv. of TMANO (Entries 7 and 8).

As shown in Entries 9–16, we also examined the intramolecular Pauson–Khand reaction using 7b and 7c. After several attempts, the acetate $7b$ afforded the desired CF_3 -cyclopentenone derivative 11b in 54% yield when the reaction was performed in the presence of 1.5 equiv. of TMANO, while the reaction with 7c required much more amount of TMANO to produce 11c in 56% yield. In all cases, the products were obtained as an almost 1: 1 diastereomeric mixture.

Very interestingly, the Pauson–Khand reaction of fluorinated propargyl ally ether 9a in the presence of TMANO took place relatively smoothly to give the corresponding bicyclic adduct 12a in a highly diastereoselective manner ([Table](#page-4-0) 5, Entry 1). In this case, only the corresponding cis adduct was detected, and no trans isomer could not be obtained at all. The similar diastereoselectivity could be observed in the other fluorinated allyl propargyl ether 9b– d, the corresponding bicyclic products being afforded in a highly cis-selective manner. However, 9e was found to be less reactive in Pauson–Khand reaction (Entry 5). In addition, changing a fluoroalkyl group from a CF_3 group to a CHF_2 group caused a significant influence on the reaction, and no product was given at all (Entry 6).

2.5. Stereochemistry

The stereochemical assignment of 12 was determined based on the NOE experiment of 12a. Thus, a NOE between Ha at δ 3.3 and

Table 5

Intramolecular Pauson–Khand reaction of allyl propargyl ethers

Determined by ¹⁹F NMR.

Values in parentheses are of isolated yield.

Fig. 2. NOE experiment of 12a.

Hb at δ 1.7 in 12a in the NOESY experiment was observed, indicating that Ha and $n - C_6H_{13}$ group is in the cis configuration relationship (Fig. 2).

3. Conclusion

In summary, we have demonstrated the intermolecular as well as intramolecular Pauson–Khand reaction by using a variety of fluorinated alkynes. The reaction of the alkynes with 2-norbornene and 2,5-norbornadiene in the presence of a stoichiometric amount of $Co₂(CO)₈$ at the reflux temperature of dichloroethane took place very smoothly to give the corresponding exo-adducts in high yields.

On the other hand, fluorinated 1,6-enynes as well as allyl propargyl ethers underwent a smooth Pauson–Khand reaction under the influence of amine oxide, like NMO or TMANO, affording the bicyclic compounds in good yields. It was noteworthy that Pauson–Khand reaction by using propargyl allyl ethers gave the adducts in a highly cis-selective manner, while 1,6-enynes afforded the bicyclic compounds in a stereorandam manner.

4. Experimental

4.1. General experimental procedures

Infrared spectra (IR) were recorded on a Shimadzu FTIR-8200A (PC) spectrophotometer and Thermo Electron Corp AVATAR 370DTGS spectrophotometer. 1 H NMR (500.13 MHz) and 13 C NMR (125.75 MHz) spectra were measured with a Bruker DRX500 spectrometer or a JEOL JNM-AL400 spectrometer in a chloroform-d (CDCl₃) solution with tetramethylsilane (TMS) as an internal reference. ¹⁹F NMR spectra were measured with a Bruker DPX300 (282.38 MHz) spectrometer or a JEOL JNM-AL400 spectrometer (376.05 MHz) in a CDCl₃ solution containing CFCl₃ as an internal reference. A JEOL JNM-EX90A (84.21 MHz, FT) spectrometer was used for determining the yields of the products with internal hexafluorobenzene (C_6F_6) , trifluoromethylbenzene (BTF), or ethyl trifluoroacetate (TFA). It was also used for the determining regioselectivity and stereoselectivity. High-resolution mass spectra (HRMS) were measured with a JEOL JMS-700 mass spectrometer by electron impact (EI), chemical ionization (CI), or fast atom bombardoment (FAB) method.

4.1.1. Materials

All chemicals were of reagent grade, and if necessary, were purified in the usual manner prior to use. Thin layer chromatography (TLC) was done with Merck 25 aluminium sheets (silica gel 60 F254). Column chromatography was carried out with Wakogel C-200. All reactions were carried out under argon atmosphere.

4.2. General procedure for the intermolecular Pauson–Khand reaction

To a solution of di-cobalt octacarbonyl, $Co₂(CO)₈$ (103 mg, 0.30 mmol) in 1,2-dichloroethane (2.0 mL) was added fluorinecontaining internal alkynes 2 (0.25 mmol) at r.t. After stirring for 2 h at r.t., the reaction mixture was cooled to 0° C and 2norbornene (71 mg, 0.75 mmol) was added to the solution. The whole was heated to the reflux temperature (ca. 84 \degree C) and stirred for 6 h at that temperature. Then the reaction mixture was again cooled to r.t., filtrated without quenching, and concentrated in vacuo. The residue was chromatographed on silica gel to afford the corresponding cyclopentenone derivatives 4 and 5.

4.2.1. 3-(4-Chlorophenyl)-2-trifluoromethyl-3a,4,5,6,7,7a-

hexahydro-4,7-methanoinden-1-one (4a)

Yield: 63%; ¹H NMR (CDCl₃) δ = 1.04 (d, J = 10.84 Hz, 1H), 1.12 $(d, J = 10.84$ Hz, 1H), 1.32–1.36 (m, 2H), 1.61–1.68 (m, 2H), 2.00 (br s, 1H), 2.47 (d, J = 5.54 Hz, 1H), 2.58 (br s, 1H), 3.05 (br d, J = 3.14 Hz, 1H), 7.28–7.31 (m, 2H), 7.42–7.45 (m, 2H); ¹³C NMR (CDCl₃) δ = 28.33, 28.91, 31.47, 38.14, 39.69, 53.01, 54.30, 121.21 (q, $J = 273.53$ Hz), 128.66, 128.89, 132.19, 133.01 (q, $J = 30.94$ Hz), 136.72, 177.28 (q, J = 2.51 Hz), 203.15; ¹⁹F NMR (CDCl₃) δ = -60.43 (s, 3F); IR (neat) 2962, 2916, 2878, 1717, 1639, 1593, 1491, 1456, 1400, 1366, 1308, 1269, 1236, 1188, 1167, 1130, 1094, 1067, 1014, 984, 937 cm⁻¹; HRMS (FAB⁺) Calcd for (M+H) $C_{17}H_{15}ClF_3O$: 327.0764, Found 327.0768.

4.2.2. 2-(4-Chlorophenyl)-3-trifluoromethyl-3a,4,5,6,7,7ahexahydro-4,7-methanoinden-1-one

Yield: 29%; ¹H NMR (CDCl₃) δ = 1.15 (br s, 2H), 1.35-1.46 (m, 2H), 1.62–1.68 (m, 1H), 1.76–1.82 (m, 1H), 2.47 (d, $J = 3.35$ Hz, 1H), 2.56 (br s, 2H), 2.94 (d, J = 5.37 Hz, 1H), 7.18– 7.21 (m, 2H), 7.37–7.40 (m, 2H); ¹³C NMR (CDCl₃) δ = 28.22, 29.02, 31.30, 38.20, 40.15, 47.29, 53.62, 122.59 (q, J = 274.30 Hz), 127.41, 128.46, 130.22, 135.40, 147.61 (q, J = 3.27 Hz), 155.47 (q, J = 32.20 Hz), 207.33; ¹⁹F NMR (CDCl₃) δ = -60.65 (s, 3F); IR (neat) 2962, 2930, 2876, 2856, 2360, 2343, 1720, 1595, 1493, 1458, 1400, 1366, 1304, 1246, 1232, 1177, 1159, 1132, 1113, 1094, 1016 cm⁻¹; HRMS (FAB⁺) Calcd for (M+H) $C_{17}H_{15}$ ClF₃O: 327.0764, Found 327.0770.

4.2.3. 3-(4-Ethoxycarbonylphenyl)-2-trifluoromethyl-3a,4,5,6,7,7ahexahydro-4,7-methanoinden-1-one (4b)

Yield: 66%; ¹H NMR (CDCl₃) δ = 1.00–1.09 (m, 1H), 1.14–1.18 $(m, 1H)$, 1.28–1.40 $(m, 2H)$, 1.41 $(t, J = 7.19$ Hz, 3H), 1.61–1.66 $(m,$ 2H), 2.00 (br s, 1H), 2.49 (d, $J = 5.20$ Hz, 1H), 2.61 (br s, 1H), 3.05– 3.08 (m, 1H), 4.41 (q, J = 7.19 Hz, 2H), 7.40 (d, J = 8.19 Hz, 2H), 8.13 $(d, J = 8.19 \text{ Hz}, 2H);$ ¹³C NMR (CDCl₃) $\delta = 14.39, 28.40, 28.99, 31.58,$ 38.01, 39.84, 53.34, 54.45, 61.47, 121.19 (q, J = 273.05 Hz), 127.14 (m), 129.75, 132.12, 133.67 (q, J = 31.12 Hz), 138.31, 165.81, 177.77 (q, J = 3.05 Hz), 203.29; ¹⁹F NMR (CDCl₃) δ = -60.51 (s, 3F); IR (neat) 2962, 2876, 1719, 1644, 1608, 1406, 1365, 1276, 1188, 1130, 1020 cm⁻¹; HRMS (FAB⁺) Calcd for (M⁺) C₂₀H₁₉F₃O₃: 364.1286, Found 364.1288.

4.2.4. 2-(4-Ethoxycarbonylphenyl)-3-trifluoromethyl-3a,4,5,6,7,7ahexahydro-4,7-methanoinden-1-one (5b)

Yield: 25%; ¹H NMR (CDCl₃) δ = 1.12–1.22 (m, 2H), 1.34–1.48 $(m, 2H)$, 1.39 $(t, J = 7.19$ Hz, 3H), 1.60–1.70 $(m, 1H)$, 1.74–1.84 $(m,$ 1H), 2.49 (d, $J = 5.60$ Hz, 1H), 2.58 (br s, 2H), 2.97 (d, $J = 5.99$ Hz, 1H), 4.39 (q, J = 7.19 Hz, 2H), 7.31 (d, J = 7.99 Hz, 2H), 8.08 (d, $J = 7.99$ Hz, 2H); ¹³C NMR (CDCl₃) $\delta = 14.43$, 28.34, 29.15, 31.47, 38.34, 40.29, 47.51, 53.86, 61.26, 122.63 (q, J = 274.13 Hz), 128.99 (m), 129.40, 131.13, 133.74, 148.18 (q, J = 3.31 Hz), 156.16 (q, J = 32.23 Hz), 166.21, 207.21; ¹⁹F NMR (CDCl₃) δ = -60.64 (s, 3F); IR (neat) 2963, 2876, 1721, 1609, 1456, 1407, 1367, 1276, 1176, 1109, 1023 cm⁻¹; HRMS (FAB⁺) Calcd for (M⁺) C₂₀H₁₉F₃O₃: 364.1286, Found 364.1291.

4.2.5. 2-Trifluoromethyl-3-(4-methoxyphenyl)-3a,4,5,6,7,7ahexahydro-4,7-methanoinden-1-one

Yield: 64%; ¹H NMR (CDCl₃) δ = 0.99 (d, J = 10.75 Hz, 1H), 1.08 $(d, J = 10.75$ Hz, 1H), 1.35 $(d, J = 11.22$ Hz, 2H), 1.62 $(d, J = 8.93$ Hz, 2H), 1.99 (s, 1H), 2.44 (d, J = 5.56 Hz, 1H), 2.56 (s, 1H), 3.12 (d, $J = 3.34$ Hz, 1H), 3.86 (s, 3H), 6.99 (d, $J = 8.71$ Hz, 2H), 7.39 (d, $J = 8.71$ Hz, 2H); ¹³C NMR (CDCl₃) $\delta = 28.44$, 28.89, 31.53, 38.70, 39.52, 52.41, 54.20, 55.36, 113.94, 121.65 (q, J = 273.55 Hz), 125.67, 129.80, 130.83 (q, J = 31.07 Hz), 161.77, 178.33 (q, J = 2.77 Hz), 203.57; ¹⁹F NMR (CDCl₃) δ = -60.24 (s, 3F); IR (neat) 2961, 2876, 2843, 1713, 1605, 1572, 1514, 1458, 1421, 1367, 1298, 1261, 1238, 1180, 1115, 1067, 1030 cm⁻¹; HRMS (FAB⁺) Calcd for (M+H) C₁₈H₁₈F₃O₂: 323.1259, Found 323.1269.

4.2.6. 3-Trifluoromethyl-2-(4-methoxyphenyl)-3a,4,5,6,7,7ahexahydro-4,7-methanoinden-1-one

Yield: 26%; ¹H NMR (CDCl₃) δ = 1.10–1.18 (m, 2H), 1.34–1.44 $(m, 2H)$, 1.59–1.68 $(m, 1H)$, 1.75–1.80 $(m, 1H)$, 2.44 $(d, J = 5.39$ Hz, 1H), 2.54 (br s, 2H), 2.92 (d, J = 5.42 Hz, 1H), 3.84 (s, 3H), 6.92-6.95 (m, 2H), 7.21–7.24 (m, 2H).

4.2.7. 2-Trifluoromethyl-3-(3-methoxyphenyl)-3a,4,5,6,7,7ahexahydro-4,7-methanoinden-1-one

Yield: 59%; ¹H NMR (CDCl₃) δ = 0.96 (d, J = 10.81 Hz, 1H), 1.07 $(d, J = 10.81$ Hz, 1H), 1.20–1.32 (m, 2H), 1.53–1.60 (m, 2H), 1.98 (br s, 1H), 2.38 (d, J = 5.50 Hz, 1H), 2.51 (br s, 1H), 2.98 (d, J = 3.12 Hz, 1H), 3.77 (s, 3H), 6.79 (br s, 1H), 6.85 (d, J = 7.99 Hz, 1H), 6.93 (dd, $J = 7.99$, 2.52 Hz, 1H), 7.30 (t, $J = 7.99$ Hz, 1H); ¹³C NMR (CDCl₃) δ = 28.34, 28.91, 31.47, 38.11, 39.68, 53.15, 54.26, 55.32, 112.99, 115.48, 119.45, 121.28 (q, J = 273.29 Hz), 129.63, 132.68 (q, $J = 31.19$ Hz), 135.15, 159.39, 178.85 (q, $J = 2.77$ Hz), 203.46; ¹⁹F NMR (CDCl₃) δ = -60.40 (s, 3F); IR (neat) 2963, 2916, 2878, 1717, 1641, 1599, 1578, 1489, 1454, 1431, 1366, 1290, 1267, 1202, 1169, 1128, 1096, 1078, 1045 cm⁻¹; HRMS (FAB⁺) Calcd for (M+H) $C_{18}H_{18}F_3O_2$: 323.1259, Found 323.1254.

4.2.8. 3-Trifluoromethyl-2-(3-methoxyphenyl)-3a,4,5,6,7,7ahexahydro-4,7-methanoinden-1-one

Yield: 27%; ¹H NMR (CDCl₃) δ = 1.02–1.15 (m, 2H), 1.28–1.38 $(m, 2H)$, 1.54–1.60 $(m, 1H)$, 1.68–1.73 $(m, 1H)$, 2.39 $(d, J = 5.31 Hz$, 1H), 2.49 (br s, 2H), 2.86 (d, J = 5.35 Hz, 1H), 3.73 (s, 3H), 6.70 (s, 1H), 6.75 (d, $J = 8.01$ Hz, 1H), 6.86 (d, $J = 8.01$, 2.43 Hz, 1H), 7.24 (t, $J = 8.01$ Hz, 1H); ¹⁹F NMR (CDCl₃) $\delta = -60.57$ (s, 3F).

4.2.9. 2-Trifluoromethyl-3-(4-methoxybenzyl)-3a,4,5,6,7,7ahexahydro-4,7-methanoinden-1-one

Yield: 57% (Combined yield); ¹H NMR (CDCl₃) δ = 1.02-1.08 (m, 2H), 1.20–1.26 (m, 2H), 1.55–1.69 (m, 2H), 2.21 (d, J = 5.53 Hz, 1H), 2.36 (d, $J = 4.11$ Hz, 1H), 2.49 (d, $J = 3.74$ Hz, 1H), 2.55 (d, $J = 3.33$ Hz, 1H), 3.61 (d, $J = 14.46$ Hz, 1H), 3.80 (s, 3H), 4.25 (d, $J = 14.46$ Hz, 1H), 6.86–6.89 (m, 2H), 7.10–7.12 (m, 2H); ¹³C NMR $(CDCI₃)$ δ = 28.20, 29.06, 31.56, 35.19, 38.08, 39.26, 50.47, 54.13, 55.25, 114.41, 121.94 (q, J = 273.42 Hz), 127.55, 129.95, 132.63 (q, $J = 30.56$ Hz), 158.80, 181.70 (q, $J = 1.89$ Hz), 203.87; ¹⁹F NMR $(CDCI₃)$ δ = -60.81 (s, 3F); IR (neat) 2959, 2876, 2839, 1717, 1639, 1611, 1512, 1456, 1421, 1364, 1303, 1252, 1126, 1036 cm⁻¹; HRMS (FAB⁺) Calcd for (M+H) C₁₉H₂₀F₃O₂: 337.1415, Found 337.1416.

4.2.10. 3-Ethoxycarbonyl-2-trifluoromethyl-3a,4,5,6,7,7ahexahydro-4,7-methanoinden-1-one

Yield: 69%; ¹H NMR (CDCl₃) δ = 1.11–1.16 (m, 2H), 1.29–1.38 $(m, 2H)$, 1.35 $(t, J = 7.14$ Hz, 3H), 1.59–1.65 $(m, 1H)$, 1.70–1.77 $(m,$ 1H), 2.39 (d, J = 5.38 Hz, 1H), 2.46 (d, J = 4.26 Hz, 1H), 2.54 (d, $J = 3.89$ Hz, 1H), 2.95 (br d, $J = 2.86$ Hz, 1H), 4.37 (q, $J = 7.14$ Hz, 2H); ¹³C NMR (CDCl₃) δ = 13.91, 28.06, 28.76, 31.51, 37.85, 39.93, 49.75, 54.02, 62.55, 120.07 (q, J = 272.92 Hz), 134.28 (q, J = 32.95 Hz), 164.48, 167.05 (q, J = 3.14 Hz), 202.41; ¹⁹F NMR (CDCl₃) δ = -63.22 (s, 3F); IR (neat) 3432, 2963, 2879, 1730, 1663, 1458, 1374, 1356, 1272, 1189, 1143, 1018, 988, 964, 943 cm⁻¹; HRMS (FAB⁺) Calcd for (M+H) $C_{14}H_{16}F_3O_3$: 289.1052, Found 289.1039.

4.2.11. 2-Difluoromethyl-3-(4-methoxyphenyl)-3a,4,5,6,7,7ahexahydro-4,7-methanoinden-1-one (4i)

Yield: 24%; ¹H NMR (CDCl₃) δ = 0.98 (d, J = 10.79 Hz, 1H), 1.10 $(d, J = 10.79$ Hz, 1H), 1.30-1.50 (m, 2H), 1.60-1.80 (m, 2H), 2.01 (br s, 1H), 2.41 (d, $J = 5.60$ Hz, 1H), 2.53 (br s, 1H), 3.18 (br s, 1H), 3.87 $(s, 3H)$, 6.48 $(t, J = 54.52$ Hz, 1H), 6.99 $(d, J = 8.79$ Hz, 2H), 7.60 $(d,$ $J = 8.79$ Hz, 2H); ¹³C NMR (CDCl₃) $\delta = 28.83$, 29.14, 31.77, 39.12, 39.39, 51.44, 54.17, 55.59, 110.88 (t, J = 235.14 Hz), 114.33, 125.59 (m) , 130.92 (m) , 133.25 $(t, J = 21.94 \text{ Hz})$, 162.27, 176.55 (m) , 206.75 (m); ¹⁹F NMR (CDCl₃) δ = -123.71 (dd, J = 314.75, 54.52 Hz, 1F), -110.19 (dd, J = 314.75, 54.52 Hz, 1F); IR (neat) 2959, 2874, 2862, 1697, 1604, 1514, 1413, 1312, 1294, 1260, 1183, 1107, 1028 cm⁻¹; HRMS (FAB⁺) Calcd for (M^+) C₁₈H₁₈F₂O₂: 304.1275, Found 304.1268.

4.2.12. 3-Difluoromethyl-2-(4-methoxyphenyl)-3a,4,5,6,7,7ahexahydro-4,7-methanoinden-1-one (5i)

Yield: 53%; ¹H NMR (CDCl₃) δ = 1.00–1.20 (m, 2H), 1.30–1.48 (m, 2H), 1.56–1.68 (m, 1H), 1.70–1.80 (m, 1H), 2.40 $(d, J = 5.60$ Hz, 1H), 2.52 (m, 1H), 2.64 (br s, 1H), 2.96 (m, 1H), 3.83 (s, 3H), 6.47 (t, $J = 54.85$ Hz, 1H), 6.95 (d, $J = 8.79$ Hz, 2H), 7.26 (d, J = 8.79 Hz, 2H); ¹³C NMR (CDCl₃) δ = 28.53, 29.21, 31.52, 38.43, 40.03, 45.86 (m), 53.85, 55.43, 112.50 (t, J = 235.14 Hz), 114.22, 121.25, 130.57, 147.48 $(t, J = 9.09 \text{ Hz})$, 158.50– 159.10 (m), 160.50, 208.97; ¹⁹F NMR (CDCl₃) δ = -119.73 (dd, J = 326.98, 54.85 Hz), –110.81 (dd, J = 326.98, 54.85 Hz); IR (neat) 2957, 2874, 2839, 1712, 1608, 1513, 1458, 1385, 1292, 1254, 1180, 1095, 1028 cm⁻¹; HRMS (FAB⁺) Calcd for $(M⁺)$ $C_{18}H_{18}F_2O_2$: 304.1275, Found 304.1278.

4.2.13. 2-Trifluoromethyl-3-(4-chlorophenyl)-3a,4,7,7a-tetrahydro-4,7-methanoinden-1-one (4j)

Yield: 68% (Combined yield); ¹H NMR (CDCl₃) δ = 1.20–1.60 (m, 2H), 2.40–2.60 (m, 2H), 3.00–3.30 (m, 2H), 6.15–6.40 (m, 2H), 7.20–7.60 (m, 4H); ¹³C NMR (CDCl₃) δ = 41.69, 43.27, 44.44, 52.92, 53.36, 120.92 (q, J = 273.32 Hz), 128.69, 129.09, 132.09, 133.07 (q, $J = 31.12$ Hz), 136.98, 138.07, 138.29, 177.58, 201.87; ¹⁹F NMR $(CDCI₃)$ δ = -60.58 (s, 3F); IR (neat) 3080, 2989, 2951, 2882, 1710, 1615, 1592, 1492, 1362, 1327, 1308, 1196, 1058, 1014 cm⁻¹; HRMS (FAB⁺) Calcd for (M^+) C₁₇H₁₂ClF₃: 324.0529, Found 324.0524.

4.2.14. 3-Trifluoromethyl-2-(4-chlorophenyl)-3a,4,7,7a-tetrahydro-4,7-methanoinden-1-one (5j)

¹⁹F NMR (CDCl₃) δ = -61.41 (s, 3F).

4.3. Preparation of fluorine-containing propargyl alcohol 7

To a solution of diisopropylamine (4.20 mL, 30 mmol) in THF (100 mL) was added 1.6 M n-BuLi solution in hexane (18.75 mL, 30 mmol) at -78 °C and the whole was stirred for 20 min. To this solution was added 2-bromo-3,3,3-trifluoropropene (1.50 mL, 15 mmol) very slowly. After stirring at -78 °C for 20 min, various aldehydes (10 mmol) or ketones (10 mmol) were added to the solution and the whole was stirred for 1 h at -78 °C. The reaction mixture was quenched with saturated NH4Cl aq. and extracted with ethyl acetate three times. The combined organic layers were dried over anhydrous $Na₂SO₄$ and concentrated in vacuo. The residue was chromatographed on silica gel to afford fluorine-containing propargyl alcohols 7 and 8.

4.3.1. 1,1,1-Trifluoro-5,5-dimethyl-7-octen-2-yn-4-ol (7a)

Yield: 73%; ¹H NMR (CDCl₃) δ = 1.00 (s, 3H), 1.02 (s, 3H), 2.04– 2.22 (m, 3H), 4.18–4.22 (m, 1H), 5.10–5.13 (m, 2H), 5.78–5.87 (m, 1H); ¹³C NMR (CDCl₃) δ = 22.46, 22.61, 38.72, 42.62, 69.38, 73.40 $(q, J = 52.43 \text{ Hz})$, 86.94 $(q, J = 21.88 \text{ Hz})$, 114.01 $(q, J = 257.30 \text{ Hz})$, 118.55, 134.00; ¹⁹F NMR (CDCl₃) δ = -56.76 (s, 3F); IR (neat) 3400, 2968, 2878, 2251, 1641, 1472, 1369, 1275, 1148, 1053, 1003, 920 cm⁻¹; HRMS (EI⁺) Calcd for (M-H) $C_{10}H_{12}F_3O$: 205.0840, Found 205.0845.

4.3.2. 1,1,1-Trifluoro-2-decyn-4-ol (8a)

Yield: quant.; ¹H NMR (CDCl₃) δ = 0.89 (t, J = 6.94 Hz, 3H), 1.25– 1.36 (m, 6H), 1.40–1.48 (m, 2H), 1.71–1.81 (m, 2H), 2.84 (br s, 1H), 4.45 (ddq, J = 3.29, 3.29, 3.29 Hz, 1H); ¹³C NMR (CDCl₃) δ = 13.90, 22.50, 24.76, 28.72, 31.58, 36.65, 61.79, 72.02 (q, J = 52.85 Hz), 87.91 (q, $J = 6.18$ Hz), 114.07 (q, $J = 257.45$ Hz); ¹⁹F NMR (CDCl₃) δ = -50.94 (s, 3F); IR (neat) 3330, 2933, 2862, 2271, 1468, 1381, 1275, 1220, 1144, 1046 cm⁻¹.

4.3.3. 6,6,6-Trifluoro-1-phenyl-4-hexyn-3-ol (8b)

Yield: 80%; ¹H NMR (CDCl₃) δ = 2.11–2.23 (m, 2H), 2.89 (t, J = 7.72 Hz, 2H), 3.35 (br s, 1H), 4.48 (br s, 1H), 7.29–7.35 (m, 3H), 7.40–7.43 (m, 2H); ¹³C NMR (CDCl₃) δ = 30.88, 37.87, 60.72, 72.20 $(q, J = 52.95 \text{ Hz})$, 87.64 $(q, J = 6.36 \text{ Hz})$, 114.05 $(q, J = 257.33 \text{ Hz})$, 126.29, 128.38, 128.56, 140.21; ¹⁹F NMR (CDCl₃) δ = -50.78 (s, 3F); IR (neat) 3366, 3088, 3066, 3030, 2956, 2931, 2866, 2269, 1710, 1604, 1497, 1455, 1379, 1275, 1140, 1049, 1017, 915 cm⁻¹; HRMS (FAB⁺) Calcd for (M^+) C₁₂H₁₁F₃O: 228.0762, Found 228.0765.

4.3.4. 1-Cyclohexyl-4,4,4-trifluoro-2-butyn-1-ol (8c)

Yield: quant.; ¹H NMR (CDCl₃) δ = 1.01–1.34 (m, 6H), 1.58– 1.66 (m, 1H), 1.66–1.72 (m, 4H), 3.22 (br s, 1H), 4.23 (ddq, $J = 3.08$, 3.18, 3.08 Hz, 1H); ¹³C NMR (CDCl₃) $\delta = 25.58$, 25.60, 26.07, 27.92, 28.32, 43.40, 66.46, 72.77 (q, J = 52.80 Hz), 87.21 (q, $J = 6.31$ Hz), 114.06 (q, $J = 257.07$ Hz); ¹⁹F NMR (CDCl₃) δ = -50.73 (s, 3F); IR (neat) 3612, 3334, 2926, 2857, 2674, 2275, 1452, 1402, 1278, 1140, 1085, 1038, 999 cm⁻¹; MS (EI⁺) m/z (rel. intensity) 123 (M-C₆H₁₁, 89.40), 83 (M-C₄H₂F₃O, 100.0), 58 (100.0).

4.3.5. 5-Ethyl-1,1,1-trifluoro-2-heptyn-4-ol (8d)

Yield: 99%; ¹H NMR (CDCl₃) δ = 0.93 (t, J = 7.37 Hz, 3H), 0.94 (t J = 7.41 Hz, 3H), 1.35–1.43 (m, 1H), 1.45–1.53 (m, 3H), 1.54–1.62 (m, 1H), 2.87 (br s, 1H), 4.49 (ddq, J = 5.05, 5.05, 2.48 Hz, 1H); ¹³C NMR (CDCl₃) δ = 11.07, 11.22, 21.59, 21.72, 46.79, 64.07, 72.77 (q, $J = 52.63$ Hz), 87.42 (q, $J = 6.40$ Hz), 114.07 (q, $J = 257.45$ Hz); ¹⁹F NMR (CDCl₃) δ = -50.82 (s, 3F); IR (neat) 3614, 3346, 2969, 2882, 2744, 2548, 2424, 2257, 1713, 1611, 1464, 1385, 1275, 1140, 1028, 941 cm⁻¹; HRMS (EI⁺) Calcd for (M⁺) C₉H₁₃F₃O: 194.0918, Found 194.0914.

4.3.6. 1-Trifluoropropynylcyclohexanol (8e)

Yield: 96%; ¹H NMR (CDCl₃) δ = 1.23-1.32 (m, 1H), 1.47-1.59 (m, 3H), 1.60–1.67 (m, 2H), 1.70–1.77 (m, 2H), 1.92–1.98 (m, 2H), 2.33 (s, 1H); ¹³C NMR (CDCl₃) δ = 22.71, 24.73, 38.85, 68.35, 71.56 $(q, J = 52.58 \text{ Hz})$, 90.62 $(q, J = 6.28 \text{ Hz})$, 114.19 $(q, J = 257.20 \text{ Hz})$; ¹⁹F NMR (CDCl₃) δ = -50.58 (s, 3F); IR (KBr) 3251, 2948, 2868, 2280, 2250, 1454, 1347, 1298, 1267, 1218, 1141, 1076, 1033, 969 cm⁻¹; HRMS (EI⁺) Calcd for (M-H) C₉H₁₀F₃O: 191.0684, Found 191.0669.

4.4. Preparation of difluoromethyl-containing propargyl alcohol

To a solution of 2,3,3-trifluoro-1-iodopropene (3.3 g, 15 mmol) in THF (100 mL) was added 1.6 M n-BuLi hexane solution (18.75 mL, 30 mmol) at -78 °C. After stirring for 1 h, *n-*heptanal (1.39 mL, 10 mmol) was added to the solution at $-78~^\circ$ C and the whole was stirred for 1 h. The reaction mixture was quenched with saturated $NH₄Cl$ aq. and extracted with ethyl acetate three times. The combined organic layers were dried over anhydrous Na2SO4 and concentrated in vacuo. The residue was chromatographed on silica gel to afford fluorine-containing propargyl alcohol 8f.

4.4.1. 1,1-Difluoro-2-decyn-4-ol (8f)

Yield: 98%; ¹H NMR (CDCl₃) δ = 0.87 (t, J = 7.00 Hz, 3H), 1.24-1.34 (m, 6H), 1.39–1.45 (m, 2H), 1.67–1.78 (m, 2H), 3.20 (br s, 1H), 4.42 (ddt, $J = 4.87$, 4.87, 6.02 Hz, 1H), 6.19 (td, $J = 55.42$, 0.76 Hz, 1H); ¹³C NMR (CDCl₃) δ = 13.91, 22.48, 24.83, 28.76, 31.59, 36.88, 61.85, 75.79 (t, $J = 33.98$ Hz), 89.88 (t, $J = 7.29$ Hz), 103.60 (t, J = 232.05 Hz); ¹⁹F NMR (CDCl₃) δ = -106.38 (dd, J = 55.42, 4.89 Hz, 2F); IR (neat) 3603, 3354, 2929, 2861, 2314, 2253, 1713, 1467, 1372, 1340, 1156, 1121, 1047 cm⁻¹; HRMS (EI⁺) Calcd for (M-H) $C_{10}H_{15}F_{2}O$: 189.1091, Found 189.1085.

4.5. Preparation of fluorine-containing propargyl acetate (7b)

To a solution of **7a** (1.03 g, 5.0 mmol) in CH_2Cl_2 (25 mL) was added pyridine (0.81 mL, 10 mmol) and acetic anhydride (0.95 mL, 10 mmol) at 0 \degree C and the whole was stirred for 12 h at r.t. The reaction mixture was quenched with saturated NH₄Cl aq. and extracted with $CH₂Cl₂$ three times. The combined organic layers were dried over anhydrous $Na₂SO₄$ and concentrated in vacuo. The residue was chromatographed on silica gel to afford fluorine-containing acetate **7b** $(1.10 \text{ g}, 4.45 \text{ mmol})$.

4.5.1. 2,2-Dimethyl-1-trifluoropropynyl-4-pentenyl acetate (7b)

Yield: 89%; ¹H NMR (CDCl₃) δ = 1.02 (s, 3H), 1.03 (s, 3H), 2.13 $(s, 5H)$, 4.95–5.15 (m, 2H), 5.21 (q, J = 2.91 Hz, 1H), 5.72–5.81 (m, 1H); ¹³C NMR (CDCl₃) δ = 20.57, 22.57, 22.85, 37.87, 42.73, 69.05, 73.16 (q, $J = 52.68$ Hz), 83.61 (q, $J = 6.43$ Hz), 113.82 (q, $J = 257.81$ Hz), 118.82, 133.05, 169.51; ¹⁹F NMR (CDCl₃) δ = -50.98 (s, 3F); IR (neat) 2974, 2935, 2882, 2438, 2266, 1751, 1716, 1641, 1421, 1364, 1283, 1229, 1150, 1092, 1022, 906 cm⁻¹.

4.6. Preparation of fluorine-containing propargyl silyl ether $(7c)$

To a solution of imidazole $(511 \text{ mg}, 7.50 \text{ mmol})$ and tbutyldimethylsilyl chloride, TBSCl (453 mg, 3.00 mmol) in DMF $(7.50$ mL) was added **7a** (309 mg, 1.50 mmol) at r.t. and the whole was stirred for 10 h at 70 \degree C. The reaction mixture was quenched with saturated $NH₄Cl$ ag. and extracted with diethyl ether three times. The combined organic layers were dried over anhydrous $Na₂SO₄$ and concentrated in vacuo. The residue was chromatographed on silica gel to afford fluorine-containing acetate 7c (333 mg, 1.04 mmol).

4.6.1. 4-(tert-Butyldimethylsilyloxy)-1,1,1-trifluoro-5,5-dimethyl-7 octen-2-yne (7c)

Yield: 69%; ¹H NMR (CDCl₃) δ = 0.10 (s, 3H), 0.15 (s, 3H), 0.92 (s, 9H), 0.94 (s, 3H), 0.96 (s, 3H), $2.00 - 2.20$ (m, 2H), 4.10 (q, J = 3.06 Hz, 1H), 5.00–5.15 (m, 2H), 5.70–5.90 (m, 1H); 13C NMR (CDCl3) $\delta = -5.34, -4.68, -2.96, 18.10, 22.40, 22.55, 25.62, 25.69, 39.23,$ 42.40, 69.86, 73.00 (q, $J = 52.30$ Hz), 88.07 (q, $J = 6.41$ Hz), 114.10 $(q, J = 257.43 \text{ Hz})$, 117.99, 134.18; ¹⁹F NMR (CDCl₃) $\delta = -50.85$ (s, 3F); IR (neat) 2960, 2932, 2860, 2251, 2141, 1717, 1420, 1364, 1277, 1221, 1146, 1094, 1007, 901 cm⁻¹; MS (EI⁺) m/z (rel. intensity) 263 (M-C4H9, 100.0).

4.7. Preparation of fluorine-containing allyl propargyl ether 9

To a solution of NaH (36 mg, 0.75 mmol) in THF (1.25 mL) was added dimethylpropylene urea (DMPU) (0.24 mL, 2.00 mmol), 8 (0.50 mmol), and allyl bromide (0.17 mL, 2.00 mmol) at -78 °C. The whole was stirred for 5 min. at -78 °C followed by warming up to r.t. After stirring for 20 min at r.t., the reaction mixture was quenched with saturated NH4Cl aq. and extracted with ethyl acetate three times. The combined organic layers were dried over anhydrous $Na₂SO₄$ and concentrated in vacuo. The residue was chromatographed on silica gel to afford fluorine-containing allyl propargyl ether 9.

4.7.1. 4-Allyloxy-1,1,1-trifluoro-2-decyne $(9a)$

Yield: 85%; ¹H NMR (CDCl₃) δ = 0.88 (t, J = 6.99 Hz, 3H), 1.25– 1.34 (m, 6H), 1.40–1.47 (m, 2H), 1.71–1.82 (m, 2H), 3.96 (dd, $J = 12.53$ Hz, 6.37 Hz, 1H), 4.15 (ddq, $J = 6.57$, 6.57, 3.13 Hz, 1H), 4.22 (ddt, J = 12.52, 5.11, 1.30 Hz, 1H), 5.23 (dd, J = 10.38, 1.21 Hz, 1H), 5.31 (ddt, J = 17.21, 1.51, 1.38 Hz, 1H), 5.85–5.93 (m, 1H); ¹³C NMR (CDCl₃) δ = 13.94, 22.51, 24.91, 28.81, 31.59, 34.76, 68.03, 70.31, 72.78 (q, $J = 52.42$ Hz), 86.76 (q, $J = 6.41$ Hz), 114.02 (q, J = 257.07 Hz), 118.07, 133.60; ¹⁹F NMR (CDCl₃) δ = -50.68 (s, 3F); IR (neat) 3086, 2931, 2861, 2268, 1736, 1649, 1460, 1423, 1379, 1337, 1276, 1147, 1091, 995 cm⁻¹; HRMS (FAB⁺) Calcd for (M-H) $C_{13}H_{18}F_3O$: 247.1310, Found 247.1299.

4.7.2. 4-Allyloxy-1,1,1-trifluoro-6-phenyl-2-hexyne (9b)

Yield: 67%; ¹H NMR (CDCl₃) δ = 2.13–2.20 (m, 1H), 2.22–2.29 $(m, 1H)$, 2.90 $(t, J = 7.60$ Hz, 2H), 4.04 (dddt, $J = 12.48$, 6.28, 1.21, 1.21 Hz, 1H), $4.19-4.23$ (m, 1H), 4.34 (dddt, $J = 12.43$, 5.16, 1.38, 1.43 Hz, 1H), 5.34 (dt, $J = 10.38$, 1.13 Hz, 1H), 5.44 (dt, $J = 17.18$, 1.49 Hz, 1H), 5.98–6.05 (m, 1H), 7.28–7.33 (m, 3H), 7.38–7.42 (m, 2H); ¹³C NMR (CDCl₃) δ = 31.04, 36.30, 67.06, 70.39, 73.08 $(q, J = 52.41 \text{ Hz})$, 86.47 $(q, J = 6.28 \text{ Hz})$, 114.02 $(q, J = 257.33 \text{ Hz})$, 118.07, 126.22, 128.46, 128.52, 133.51, 140.49; ¹⁹F NMR (CDCl₃) δ = -50.66 (s, 3F); IR (neat) 3030, 2930, 2866, 2264, 1497, 1456, 1427, 1277, 1144, 1096, 1061, 995, 932 cm⁻¹; HRMS (EI⁺) Calcd for (M^+) C₁₅H₁₅F₃O: 268.1075, Found 268.1062.

4.7.3. 1-Allyloxy-1-cyclohexyl-4,4,4-trifluoro-2-butyne (9c)

Yield: 91%; ¹H NMR (CDCl₃) δ = 1.04–1.30 (m, 5H), 1.66–1.87 $(m, 6H), 3.91-3.96$ $(m, 2H), 4.23$ (ddt, $J = 12.64, 5.03, 1.44$ Hz, 1H), 5.21 (ddt, $J = 10.40$, 1.38, 1.19 Hz, 1H), 5.31 (ddt, $J = 17.24$, 1.57, 1.54 Hz, 1H), 5.84–5.91 (m, 1H); ¹³C NMR (CDCl₃) δ = 25.70, 25.74, 26.19, 28.31, 28.68, 42.14, 70.45, 72.89, 73.56 (q, J = 52.31 Hz), 86.10 (q, J = 6.35 Hz), 114.05 (q, J = 257.33 Hz), 117.89, 133.69; ¹⁹F NMR (CDCl₃) δ = -50.51 (s, 3F); IR (neat) 3437, 3085, 3018, 2926, 2857, 2666, 2254, 1736, 1649, 1453, 1424, 1411, 1374, 1332, 1279, 1215, 1140, 998 cm⁻¹.

4.7.4. 4-Allyloxy-5-ethyl-1,1,1-trifluoro-2-heptyne (9d)

Yield: 98%; ¹H NMR (CDCl₃) δ = 0.91 (t, J = 7.40 Hz, 3H), 0.92 (t, J = 7.41 Hz, 3H), 1.35–1.42 (m, 1H), 1.46–1.51 (m, 2H), 1.56–1.64 $(m, 2H)$, 3.94 (ddt, J = 12.66, 6.41, 1.27 Hz, 1H), 4.17 (ddq, J = 2.91, 2.21, 2.91 Hz, 1H), 4.24 (ddt, J = 12.64, 4.99, 1.57 Hz, 1H), 5.23 (ddt, $J = 10.40, 1.29, 1.38$ Hz, 1H), 5.32 (ddt, $J = 17.23, 1.57, 1.57$ Hz, 1H), 5.85–5.93 (m, 1H); ¹³C NMR (CDCl₃) δ = 11.32, 11.41, 21.99, 22.06, 45.58, 70.50, 70.59, 73.55 (q, $J = 52.53$ Hz), 86,36 (q, $J = 6.38$ Hz), 114.02 (q, $J = 256.95$ Hz), 117.93, 133.72; ¹⁹F NMR (CDCl₃) δ = -50.54 (s, 3F); IR (neat) 3086, 2967, 2939, 2880, 2261, 1736, 1649, 1463, 1424, 1412, 1383, 1330, 1275, 1215, 1143, 1078, 998 cm⁻¹; HRMS (FAB⁺) Calcd for (M-H) C₁₂H₁₆F₃O: 233.1153, Found 233.1160.

4.7.5. 1-Allyloxy-1-trifluoropropynylcyclohexane (9e)

Yield: 51%; ¹H NMR (CDCl₃) δ = 1.35–2.05 (m, 10H), 4.09 (dt, $J = 5.46$, 1.14 Hz, 2H), 5.15–5.21 (m, 1H), 5.31 (dd, $J = 17.20$, 1.60 Hz, 1H), 5.90–5.98 (m, 1H); ¹³C NMR (CDCl₃) δ = 22.31, 25.04, 36.26, 64.96, 73.14 (q, J = 52.51 Hz), 73.21, 89.00 (q, J = 6.34 Hz), 114.18 (q, $J = 256.95$ Hz), 116.64, 134.64; ¹⁹F NMR (CDCl₃) δ = -50.35 (s, 3F); IR (neat) 3084, 2940, 2864, 2270, 1729, 1693, 1681, 1648, 1451, 1426, 1385, 1353, 1264, 1140, 1030, 995 cm⁻¹.

4.7.6. 4-Allyloxy-1,1-difluoro-2-decyne (9f)

Yield: 56%; ¹H NMR (CDCl₃) δ = 0.88 (t, J = 6.92 Hz, 3H), 1.25– 1.33 (m, 6H), 1.40–1.47 (m, 2H), 1.69–1.81 (m, 2H), 3.95 (dd, J = 12.53, 6.32 Hz, 1H), 4.14 (tdd, J = 5.97, 4.95, 4.95 Hz, 1H), 4.22 $(dd, J = 12.56, 5.09 Hz, 1H), 5.20 (d, J = 10.39 Hz, 1H), 5.30 (dd,$ $J = 17.23$, 1.36 Hz, 1H), 5.85–5.92 (m, 1H), 6.21 (t, $J = 55.42$ Hz, 1H); $13C$ NMR (CDCl₃) δ = 13.94, 22.50, 24.97, 28.83, 31.59, 34.99, 68.27 $(t, J = 1.67$ Hz), 70.01, 76.75 $(t, J = 33.71$ Hz), 88.31 $(t, J = 7.19$ Hz), 103.55 (t, J = 232.05 Hz), 117.76, 133.83; ¹⁹F NMR (CDCl₃) δ = – 106.15 (dd, J = 55.42, 4.51 Hz, 2F); IR (neat) 3435, 3084, 2930, 2861, 2251, 1732, 1648, 1460, 1426, 1410, 1373, 1336, 1272, 1155, 1047, 931 cm⁻¹; HRMS (FAB⁺) Calcd for (M-H) C₁₃H₁₉F₂O: 229.1404, Found 229.1413.

4.8. General procedure for the intramolecular Pauson-Khand reaction

To a solution of $Co_2(CO)_8$ (68 mg, 0.20 mmol) in THF (2.00 mL) was added fluorine-containing enynes 7a–c or allyl propargyl ethers 9 (0.20 mmol) at r.t. After stirring for 1 h at r.t. the reaction mixture was cooled to 0° C. To the solution was added Nmethylmorpholine N-oxide, NMO (1.5, 3.0, or 6.0 equiv.) or trimethylamine N-oxide dihydrate, TMANO-2H₂O (1.5, 3.0, or 6.0 equiv.) at 0 °C. Then the whole was stirred for 1 h at r.t. The reaction mixture was quenched with saturated NH₄Cl aq. and NaCl aq. and extracted with ethyl acetate three times. The combined organic layers were dried over anhydrous $Na₂SO₄$ and concentrated in vacuo. The residue was chromatographed on silica gel to afford cyclopentenone derivatives 11a–c, 12a–e.

4.8.1. 3-Trifluoromethyl-4-hydroxy-5,5-dimethyl-4,5,6,6atetrahydro-2(1H)-pentalenone (11a)

Yield: 67%.

Major isomer

¹H NMR (CDCl₃) δ = 1.08 (s, 3H), 1.20 (s, 3H), 1.46 (dd, J = 12.51, 11.09 Hz, 1H), $1.97 - 2.04$ (m, 1H), 2.24 (br s, 1H), 2.24 (dd, $I = 17.97$, 3.82 Hz, 1H), 2.78 (d, $J = 17.96$, 6.80 Hz, 1H), 3.10-3.16 (m, 1H), 4.61 (s, 1H); ¹³C NMR (CDCl₃) δ = 23.61, 28.25, 39.98, 42.75, 43.43, 44.87, 75.51, 121.26 (q, J = 271.64 Hz), 127.88 (q, J = 33.58 Hz), 192.50 (q, J = 2.52 Hz), 201.95; ¹⁹F NMR (CDCl₃) δ = -60.99 (s, 3F); IR (neat) 3447, 2962, 2936, 2872, 1716, 1672, 1360, 1132, 1065, 1011, 941 cm⁻¹; HRMS (FAB⁺) Calcd for (M+H) C₁₁H₁₄F₃O₂: 235.0946, Found 235.0937.

Minor isomer

¹H NMR (CDCl₃) δ = 1.05 (s, 3H), 1.19 (s, 3H), 1.25 (dd, J = 8.49, 7.14 Hz, 1H), 1.97-2.04 (m, 1H), 2.11 (dd, $J = 12.80$, 9.70 Hz, 1H), 2.23 (br s, 1H), 2.79–2.84 (m, 1H), 3.42–3.47 (m, 1H), 4.51 (s, 1H); ¹³C NMR (CDCl₃) δ = 22.36, 28.75, 40.94, 42.54, 43.88, 44.55, 75.51, 121.28 (q, J = 272.02 Hz), 127.62 (q, J = 33.20 Hz), 188.63, 202.55; ¹⁹F NMR (CDCl₃) δ = -62.54 (s, 3F); IR (neat) 3447, 2962, 2936, 2872, 1716, 1672, 1360, 1132, 1065, 1011, 941 cm $^{-1}$; HRMS (FAB $^{\mathrm{*}}$) Calcd for (M+H) $C_{11}H_{14}F_3O_2$: 235.0946, Found 235.0937.

4.8.2. 4-(Acetyloxy)-3-trifluoromethyl-5,5-dimethyl-4,5,6,6atetrahydro-2(1H)-pentalenone (11b) Yield: 52%.

Major isomer

¹H NMR (CDCl₃) δ = 1.11 (s, 3H), 1.15 (s, 3H), 1.24 (dd, J = 12.77, 10.47 Hz, 1H), 2.12 (s, 3H), 2.12-2.15 (m, 1H), 2.24 (dd, J = 18.25, 3.48 Hz, 1H), 2.80 (t, $J = 7.21$ Hz, 1H), 3.35–3.41 (m, 1H), 5.68 (s, 1H); ¹³C NMR (CDCl₃) δ = 20.42, 23.12, 28.78, 41.23, 43.22, 44.06, 44.62, 75.60, 120.74 (q, J = 271.39 Hz), 128.44 (q, J = 23.01 Hz), 169.47, 184.23 (q, J = 3.27 Hz), 201.88; ¹⁹F NMR (CDCl₃) δ = -63.10 (s, 3F); IR (neat) 2968, 2939, 2874, 1732, 1684, 1373, 1317, 1236, 1196, 1134, 1045, 941, 912 cm⁻¹; HRMS (FAB⁺) Calcd for (M+H) $C_{13}H_{16}F_3O_3$: 277.1052, Found 277.1054.

Minor isomer

¹H NMR (CDCl₃) δ = 1.02 (s, 3H), 1.28 (s, 3H), 1.43 (t, $J = 12.23$ Hz, 1H), 2.02 (dd, $J = 12.43$, 8.11 Hz, 1H), 2.12 (s, 3H), 2.28 (dd, J = 18.18, 3.46 Hz, 1H), 2.84 (t, J = 6.78 Hz, 1H), 3.19– 3.24 (m, 1H), 5.82 (s, 1H); ¹³C NMR (CDCl₃) δ = 20.21, 23.56, 27.99, 40.77, 42.82, 43.50, 44.72, 76.21, 120.75 (q, J = 272.65 Hz), 128.71 (q, $J = 23.14$ Hz), 169.79, 188.45 (q, $J = 2.52$ Hz), 201.19; ¹⁹F NMR (CDCl₃) δ = -62.11 (s, 3F); IR (neat) 2968, 2939, 2874, 1732, 1684, 1373, 1317, 1236, 1196, 1134, 1045, 941, 912 cm⁻¹; HRMS (FAB⁺) Calcd for (M+H) $C_{13}H_{16}F_3O_3$: 277.1052, Found 277.1054.

4.8.3. 4-(tert-Butyldimethylsilyloxy)-3-trifluoromethyl-5,5 dimethyl-4,5,6,6a-tetrahydro-2(1H)-pentalenone (11c) Yield: 53%.

Major isomer

¹H NMR (CDCl₃) δ = 0.02 (s, 3H), 0.12 (s, 3H), 0.84 (s, 3H), 0.88 (s, 9H), 1.16 (s, 3H), 1.16 (dd, J = 13.03, 6.32 Hz, 1H), 2.04-2.20 (m, 2H), 2.85 (dd, J = 18.29, 7.07 Hz, 1H), 3.43-3.49 (m, 1H), 4.35 (s, 1H); ¹³C NMR (CDCl₃) δ = 0.99, 14.09, 18.08, 22.63, 23.77, 25.62, 28.33, 31.57, 39.80, 41.62, 44.87, 45.13, 76.06, 121.16 (q, $J = 272.02$ Hz), 125.74 (q, $J = 32.95$ Hz), 189.22 (q, $J = 2.89$ Hz), 203.12; ¹⁹F NMR (CDCl₃) δ = -62.54 (s, 3F); IR (neat) 2957, 2932, 2860, 1732, 1684, 1472, 1362, 1344, 1261, 1230, 1215, 1140, 1094, 939 cm⁻¹; HRMS (FAB⁺) Calcd for (M+H) $C_{17}H_{28}F_3O_2^{28}Si$: 349.1811, Found 349.1802.

Minor isomer

¹H NMR (CDCl₃) δ = 0.07 (s, 3H), 0.12 (s, 3H), 0.89 (s, 3H), 0.94 (s, 9H), 1.19 (s, 3H), 1.40 (dd, J = 13.50, 7.75 Hz, 1H), 2.04–2.15 (m, 2H), 2.76 (dd, J = 18.09, 7.25 Hz, 1H), 3.00–3.06 (m, 1H), 4.72 (d, $J = 1.66$ Hz, 1H); ¹³C NMR (CDCl₃) $\delta = -3.96$, 14.10, 18.07, 22.64, 24.22, 25.93, 28.71, 31.57, 35.89, 42.25, 44.07, 44.41, 80.18, 121.04 $(q, J = 272.65 \text{ Hz})$, 126.82 $(q, J = 34.21 \text{ Hz})$, 190.55 $(q, J = 2.64 \text{ Hz})$, 202.27; ¹⁹F NMR (CDCl₃) δ = -58.45 (s, 3F); IR (neat) 2957, 2932, 2860, 1732, 1684, 1472, 1362, 1344, 1261, 1230, 1215, 1140, 1094, 939 cm⁻¹; HRMS (FAB⁺) Calcd for (M+H) $C_{17}H_{28}F_3O_2^{28}Si$: 349.1811, Found 349.1818.

4.8.4. 1-Hexyl-6-trifluoromethyl-3a,4-dihydro-1Hcyclopenta[c]furan-5(3H)-one $(12a)$

Yield: 34%; ¹H NMR (CDCl₃) δ = 0.87 (t, J = 6.86 Hz, 3H), 1.24-1.48 (m, 8H), 1.68-1.83 (m, 2H), 2.28 (dd, $J = 18.10$, 2.92 Hz, 1H), 2.71–2.78 (m, 1H), 3.31–3.39 (m, 2H), 4.36–4.43 (m, 1H), 4.83 (br s, 1H); ¹³C NMR (CDCl₃) δ = 13.96, 22.48, 25.17, 28.90, 31.54, 33.72, 39.52, 44.00, 70.61, 76.38, 121.05 (q, J = 271.41 Hz), 125.95 (q, J = 34.34 Hz), 188.43, 200.97; ¹⁹F NMR (CDCl₃) δ = -62.33 (s, 3F); IR (neat) 2955, 2929, 2859, 1734, 1687, 1468, 1370, 1342, 1310, 1205, 1137, 1023, 951, 929 cm⁻¹; HRMS (FAB⁺) Calcd for (M+H) $C_{14}H_{20}F_{3}O_{2}$: 277.1415, Found 277.1414; Anal. Calcd for $C_{14}H_{19}F_3O_2$: C, 60.86; H, 6.93. Found: C, 61.20; H, 6.57.

4.8.5. 6-Trifluoromethyl-1-(2-phenylethyl)-3a,4-dihydro-1Hcyclopenta[c]furan-5(3H)-one (12b)

Yield: 45%; ¹H NMR (CDCl₃) δ = 1.99-2.06 (m, 1H), 2.12-2.19 $(m, 1H)$, 2.29 (dd, J = 18.12, 2.90 Hz, 1H), 2.74–2.84 $(m, 3H)$, 3.34– 3.41 (m, 2H), 4.44 (br s, 1H), 4.82 (br d, $J = 8.27$ Hz, 1H), 7.20–7.32 (m, 5H); ¹³C NMR (CDCl₃) δ = 31.35, 35.18, 39.55, 44.04, 70.70, 75.52, 120.98 (q, J = 271.39 Hz), 126.06 (q, J = 34.46 Hz), 126.24, 128.41, 128.50, 140.47, 188.04 (q, $J = 3.14$ Hz), 200.77; ¹⁹F NMR $(CDCI₃)$ δ = -62.32 (s, 3F); IR (neat) 3028, 2862, 1732, 1690, 1497, 1456, 1371, 1344, 1310, 1132, 1030, 991, 949, 928, 912 cm⁻¹; HRMS (FAB⁺) Calcd for (M+H) $C_{16}H_{16}F_3O_2$: 297.1102, Found 297.1103.

4.8.6. 1-Cyclohexyl-6-trifluoromethyl-3a,4-dihydro-1Hcyclopenta[c]furan-5(3H)-one $(12c)$

Yield: 35%; ¹H NMR (CDCl₃) δ = 1.12-1.32 (m, 5H), 1.58-1.62 $(m, 1H)$, 1.65–1.70 $(m, 2H)$, 1.73–1.80 $(m, 3H)$, 2.27 $(dd, J = 17.85$, 2.87 Hz, 1H), 2.72–2.78 (m, 1H), 3.28–3.35 (m, 2H), 4.35–4.41 (m, 1H), 4.68 (br s, 1H); ¹³C NMR (CDCl₃) δ = 25.91, 26.20, 27.83, 29.31, 39.60, 41.97, 44.23, 70.35, 80.76, 121.01 (q, J = 271.79 Hz), 126.83 $(q, J = 33.96 \text{ Hz})$, 187.42 $(q, J = 3.14 \text{ Hz})$, 201.23; ¹⁹F NMR (CDCl₃) δ = -62.20 (s, 3F); HRMS (FAB⁺) Calcd for (M+H) C₁₄H₁₈F₃O₂: 275.1259, Found 275.1269; Anal. Calcd for $C_{14}H_{17}F_3O_2$: C, 61.31; H, 6.25. Found: C, 61.07; H, 6.15.

4.8.7. 1-(1-Ethylpropyl)-6-trifluoromethyl-3a,4-dihydro-1Hcyclopenta[c]furan-5(3H)-one (12d)

Yield: 51%; ¹H NMR (CDCl₃) δ = 0.88 (t, J = 7.49 Hz, 3H), 0.97 (t, J = 7.44 Hz, 3H), 1.28–1.34 (m, 1H), 1.38–1.45 (m, 2H), 1.50–1.57 $(m, 1H)$, 1.67–1.72 $(m, 1H)$, 2.28 $(ddd, J = 18.00, 2.89, 0.70 Hz, 1H)$, 2.72–2.78 (m, 1H), 3.28–3.34 (m, 2H), 4.34–4.40 (m, 1H), 4.88 (br s, 1H); ¹³C NMR (CDCl₃) δ = 11.55, 22.05, 22.55, 39.76, 44.71, 44.96, 70.22, 78.37, 121.10 (q, J = 271.54 Hz), 126.29 (q, J = 33.83 Hz), 189.40 (q, J = 2.77 Hz), 201.05; ¹⁹F NMR (CDCl₃) δ = -62.14 (s, 3F); IR (neat) 2966, 2937, 2878, 1732, 1682, 1463, 1412, 1368, 1339, 1306, 1286, 1233, 1205, 1136, 1049, 1023, 1000, 953 cm⁻¹; HRMS (EI⁺) Calcd for C₁₃H₁₇F₃O₂: 262.1181, Found 262.1192.

References

[1] (a) I. Alonso, J.C. Carretero, J.L.G. Ruano, L.M.M. Cabrejas, I. López-Solera, Tetrahedron Letters 35 (1994) 9461–9464;

(b) L. Trembleau, L. Patiny, L. Ghosez, Tetrahedron Letters 41 (2000) 6377–6381; (c) S.J. Degrado, H. Mizutani, A.H. Hoveyda, Journal of the American Chemical Society 123 (2001) 755–756;

(d) J.L.G. Ruano, A. Tito, M.T. Peromingo, Journal of Organic Chemistry 68 (2003) 10013–10019;

(e) G. de la Herrán, M. Mba, C. Murcia, J. Plumet, A.G. Csákÿ, Organic Letters 7 (2005) 1669–1671;

- (f) J. Hernández-Toribio, R.G. Arrayás, B. Martin, J.C. Matute, Crretero, Organic Letters 11 (2009) 393–396.
- [2] There have been several reports on the synthesis of 2-CF3-2-cyclopentenone derivatives so far. See
	- (a) M. Ishizaki, D. Suzuki, O. Hoshino, J. Fluorine, Chemistry 111 (2001) 81–90; (b) R. Nadano, J. Ichikawa, Chemistry Letters 36 (2007) 22–23;
	- (c) R. Nadano, K. Fuchibe, M. Ikeda, H. Takahashi, J. Ichikawa, Chemistry Asian Journal 5 (2010) 1875–1883;

(d) J.-C. Kizirian, N. Aiguabella, A. Pesquer, S. Fustero, P. Bello, X. Verdaguer, A. Riera, Organic Letters 12 (2010) 5620–5623.

- [3] (a) N.E. Schore, Chemical Reviews 88 (1988) 1081–1119;
	- (b) N.E. Schore, Organic Reactions 40 (1991) 1–90;
	- (c) O. Geis, H.-G. Schmalz, Angewandte Chemie International Edition 37 (1998) 911–914;
	- (d) K.M. Brummond, J.L. Kent, Tetrahedron 56 (2000) 3263–3283;

(e) A.J. Fletcher, S.D.R. Christie, Journal of Chemical Society, Perkin Transactions 1 (2000) 1657–1668;

(f) T. Sugihara, M. Yamaguchi, M. Nishizawa, Chemistry: European Journal (2001) 1589–1595;

- (g) M.R. Rivero, J. Adrio, J.C. Carretero, European Journal of Organic Chemistry (2002) 2881–2889;
- (h) B. Alcaide, P. Almendros, European Journal of Organic Chemistry (2004) 3377–3383;
- (i) L.V.R. Boñaga, M.E. Krafft, Tetrahedron 60 (2004) 9795-9833;

(j) S. Laschat, A. Becheanu, T. Bell, A. Baro, Synlett (2005) 2547–2570;

(k) M. Turlington, Y. Yue, X.-Q. Yu, L. Pu, Journal of Organic Chemistry 75 (2010) 6941–6952.

- [4] For preliminary findings, we have already reported. See, The Tenth International Kyoto Conference on New Aspects of Organic Chemistry (IKCOC-10). Program and Abstracts, PA-0272006.
- [5] For the preparation of the fluorinated alkynes, See

(a) T. Hiyama, K. sato, M. Fujita, Bulletin of the Chemical Society of Japan 62 (1989) 1352–1354;

(b) T. Konno, J. Chae, M. Kanda, G. Nagai, K. Tamura, T. Ishihara, H. Yamanaka, Tetrahedron 59 (2003) 7571–7580.

[6] Generally, the intermolecular Pauson–Khand reaction of alkynes with norbornene as well as norbornadiene yields exclusively the exo-fused cyclopentenone adducts. Additionally, there has been one example in which the intermolecular Pauson–Khand reaction of ethyl 4,4,4-trifluorobutynoate with 2,5-norbornadiene in the presence of $Co_2(CO)_8$ afforded the exo-adduct exclusively (see Ref. [2d].) Therefore, we determined the products 4 and 5 as the exo-adducts. There have been very few examples of endo-selectivity. See

(a) J.A. Casalnuovo, R.W. Scott, E.A. Harwood, N.E. Shore, Tetrahedron Letters 35 (1994) 1153–1156;

- (b) B.L. Pagenkopf, D.B. Belanger, D.J.R. O'Mahony, T. Livinghouse, Synthesis (2000) 1009-1019;
- (c) J. Adrio, M.R. Rivero, J.C. Carretero, Angewandte Chemie International Edition 39 (2000) 2906–2909;
- (d) J. Solá, A. Riera, M.A. Pericás, X. Verdaguer, M.A. Maestro, Tetrahedron Letters 45 (2004) 5387–5390.
- [7] (a) T. Sugihara, Y. Okada, M. Yamaguchi, M. Nishizawa, Synlett (1999) 768–770;
	- (b) X. Verdaguer, A. Lledó, C. López-Mosquera, M.A. Maestro, M.A. Pericàs, A. Riera, Journal of Organic Chemistry 69 (2004) 8053–8061;
	- (c) A. Lagunas, A.M.I. Payeras, C. Jimeno, M.A. Pericàs, Organometallic Chemistry 7 (2005) 3033–3036;
	- (d) J. Solà, A. Riera, M.A. Pericàs, X. Verdaguer, M.A. Maestro, Tetrahedron Letters 45 (2004) 5387–5390.
- [8] F. Robert, A. Millet, Y. Gimbert, D. Konya, A.E. Greene, Journal of the American Chemical Society 123 (2001) 5396–5400.
- [9] G. Bott, F.G. Field, S. Sternhell, Journal of the American Chemical Society 102 (1980) 5618–5626.

[10] It has been recognized that a CHF₂ is smaller than a CF₃ group. See

(a) P.V. Ramachandran, B. Gong, A.V. Teodorović, H.C. Brown, Tetrahedron: Asymmetry 5 (1994) 1061–1074;

(b) P.V. Ramachandran, A.V. Teodorović, B. Gong, H.C. Brown, Tetrahedron: Asymmetry 5 (1994) 1075–1086; (c) T. Yamazaki, T. Ichige, S. Takei, S. Kawashita, T. Kitazume, Organic Letters 3

(2001) 2915–2918.

[11] T. Yamazaki, K. Mizutani, T. Kitazume, Journal of Organic Chemistry 60 (1995) 6046–6056.